THE PROBLEM OF HEAT TRANSFER THROUGH
FINNED SURFACES

R. A, Berezhinskii and M, A, Geishtovt UDC 536,242

The results of an analytic investigation of heat transfer through a finned surface are presented;
the limits of applicability of the assumption that the heat-transfer coefficient remains constant
over the entire height of the fin are defined; and recommendations are given for calculations

in the region in which this assumption is not applicable,

In the great majority of studies [1-4] devoted to the question of heat transfer through finned surfaces,
boundary conditions of the third kind are usually preferred for the analytic investigation of the process; it
is usually assumed that the heat-transfer coefficient @ is constant over the entire height of the fin, i.e., @
= const,

This agsumption is effective from the viewpoint of obtaining an analytic solution of the problem, but
it is not sufficiently justified for a number of cases of practical importance that use finned heat-transfer
surfaces (surfaces with closely spaced fins past which there is a flow with large Re values), Actually, there
are a number of factors — the most important of which is the extreme laminarization of the flow at points
of inflection — that cause o to vary considerably over the height of the fin, It is impossible to give an a
priori law for the variation of ¢,

Consequently, the problem of heat transfer through a finned surface must be formulated not as a prob-
lem with known boundary conditions of the third kind but as a problem that reduces to the simultaneous solu-
tion of equations for heat conduction in the wall and for convective transfer of heat in the liquid (or gas)
flowing past the fin, The law governing the variation of & along the height of the fin is found by solving this
problem,

We give below the results of an approximate solution of the problem of heat transfer through a finned
surface, on the basis of which it is possible to determine the limits of applicability of the assumption that
o = const,

We consider a plane one-gided finned wall (Fig, 1), past which flows a hydraulically and thermally
stabilized turbulent stream of liquid (or gas)., The thermophysical properties of the fluid are assumed to
be independent of temperature, The notation for the geometric parameters of the wall (the fins are of con-
stant cross section) and the directions of the coordinate axes are shown in Fig,1.

In order to construct a hydraulic model, we used Prandtl's hypothesis concerning the structure of the
turbulent flow, i.e., we assumed that in the rectangular channels formed by the fins there was a turbulent
core and a laminar underlayer on the solid surfaces (Fig,1), We further assumed that there was no overflow
of liquid by way of the free surface at the top of the fins and that there was no friction on the surface,

To solve the problem, we must have distribution profiles for the velocities and temperatures in the
liquid,

We assumed that in the turbulent core the distribution of velocities and temperatures is represented
by a fractional-power function, with exponent 1/7 (Prandtl, Eckert, et al, [3, 5]).

The distribution of velocities in the laminar underlayer is described by a cubical parabola [1, 3, 5].
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For the laminar underlayer we assumed that the density
Turbulent core of the heat flux is constant along a thermal streamline and is
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y La\mmar underlayer equal to the heat flux density on the surface of the fin,
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7 thickness of the laminar underlayer, and the density of the heat
1 .
7 flux on the surface of the fin,

The equation of the boundary of the laminar underlayer is

Fig,1, Finned surface and hydraulic

given
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as follows:

model of flow " 4, :
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The density of the heat flux on the surface of the fin is:

At
g= 1L F\ (T —F)),

£
5 h (3)

L= — 6.

The dimensionless parameters in formulas (1), (2), and 3) are defined as follows:
x = (x)/(1/2)l4, ¥y = y/h are dimensionless linear coordinates;

Re = (way2l;)/v is the Reynolds number, as determined from the stream velocity for the average
flow rate;

Tg = (tf-—t*)/(tfo—t*) is a dimengionless expression for the surface temperature of the fin;
Fi[Re, y), F,(Re, y) are known functions of Re and y.

Setting (3) equal to the expression for q¢ obtained from the equation for heat conduction in a fin as
in a number of studies [1, 2], we have the differential equation

&y
d_2

Y

— OF,T; = — ®OF,F,. (4)
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Fig.2, a) Curves for determining the average temperature of the
liquid (or gas); b) curves for determining the total amount of heat
removed from the fin (the figures next to the curves represent
Reynolds numbers).

It follows from Eq, (4) that the temperature distribution along the height of the fin is determined only
by the two dimensionless quantities Re and &, which congiderably simplifies the analysis of our solution,
The quantity & combines the thermophysical characteristics of the liquid and the wall material and the geo-
metric parameters of the surface:

T
g b

The solution of Eq, (4) was obtained as the sum of a power series, This problem was solved numeri-
cally on an electronic computer,

The values of Re and & were varied over the ranges 104 < Re < 108, 1074 < & < 1, which include the
ranges found in the operation of present-day heat-transfer devices.

Using the results of calculations for the fin temperatures, we investigated the local and average heat
transfer. The local heat-transfer coefficient is given by the formula:

9: (9) 6

a(y) = F ) — oy

or, in dimensionless form:

Nu:“(yh)Qh — AF, (F — F,)
Miq Tt —Tay

(5a)
where Tay = (tay~t4)/(tgo—t+) is the dimensionless average calorimetric temperature of the liquid {the de~
pendence of which on Re and & is shown in Fig, 2a),

The heat-transfer coefficient averaged over the height of the fin is defined as

. S (6)
av 2]7. (l‘f — tav)av

where (tf—tyy)av is the temperature difference between fin and fluid, averaged over the height of the fin,

For the value of Qf we obtained the expression

by —tav Agd¢
=hT2v 49
Qf 1—T h ( 2) (M)

The coefficient C, in formula (7) is the value of the derivative (de/d})y:ﬂ.
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Fig.3. Distribution of local heat exchange along the
height of the fin for Re = 10° (& = 1 for curves 1 and 4;
& = 107! for curve 2; & = 102 for curve 3),

The value of the coefficient C, was found from calcula-

gao
h \ tions of the variation in temperature along the height of the
\ \ fin; the variation of C, as a function of Re and & is shown in
iy Fig.2b,
N \
5. . Substituting (7) into (6) and making some transforma-
lim, 1 . . N :
tions, we obtain the following expression for Nugy, the Nus-~
-2 selt number averaged over the height of the fin:
By 4(—C 1
lim. 2 Nuav= (qb 2) — (62)
Tt av—Tav
-7 N
| Figure 3 shows the results of calculations for the
% G s 7 Tgre variation of local heat exchange with height along the fin for
—10° ;
Fig.4. Relationship between the Reynolds Re = 10° and different values of ¢.
number Re and the limiting values of &, The heat exchange is very unevenly distributed along

the height of the fin: at the base of the fin the local value of
Nu may be only a few percent of Nuyy; as y increases, so does Nu, and at the top of the fin the local Nu is
several times as great as Nugy. For a fixed y value, Nu (or @) approaches infinity as Re and & increase,
but for larger values of y it falls into the negative region,

This means that the local value of t; becomes less than the average calorimetric temperature of the
liquid, and the usual definition of o given in (5) is inapplicable in this region, This result agrees with the
conclusions arrived at by Chapman [6] and T, L. Perel'man (ITMO AN BSSR).

The limiting values of &p;, , for different Reynolds numbers Re, with & remaining constant over the
entire height of the fin, are shown in the form of graphs in Fig. 4,

A comparison of the calculated results for the averaged heat exchange with the experimental data of
other authors [4, 7] for heat exchange in rectangular channels with one-sided heating shows great agree-
ment, We found that for Re > 104, the calculation of the average heat exchange based on fractional-power
functions obtained by generalizing the experimental data on heat exchange in channels with isothermal sur-
faces gave us results which were too high (by more than 20%),

The limits of applicability of the assumption & = const were determined on the basis of the require-
ment that the calculated value of the temperature at the base of a fin, which is the maximum temperature
of the finned side, should yield values differing by no more than 10% when calculated by the two procedures
being compared.,

The following expression is known for Q; when & = const [1]:
Qf = (tgy— taw) ASgm th (mh),

2 1 = (8)
—#‘kaf =05 Y @ Nu.

m=

It should be noted that when the calculations are made by the method using the assumption o = const,
the fluid temperature tgy is given as an integral part of the boundary conditions,
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Since the heat flux given off by a fin into the cooling medium is independent of the method by which the
heat transfer is calculated, it follows that by equating the right sides of the expressions (7) and (8), we can
obtain a relation for comparing the temperatures tg, obtained by the two methods under comparison:

1 A T —
1 — VO Nu,
et 2 ]/@Nuavth< 5V Nuav)

[tf(]’_ tav]oc:const (—’ Cz)

(1’—Tav)' (9)

For small values of Re and & the temperatures under comparison are in good agreement, However,
as Re and & increase, the temperature tf, calculated on the assumption that & = const will be considerably
lower than the temperatures tf, found by calculations taking account of the variation of a,

Thus, to disregard the variation of heat exchange with height along the fin may result in the designed
heat exchanger being unworkable, since the calculated value of the maximum temperature will be lower than
the true value,

The graph in Fig,4 shows how the limiting value of the complex &1jyy , varies with Re. For & < ®pip o
the heat transfer through the finned surface may be calculated by methods using the assumption o = const
the error in the temperature calculation will not exceed 10%),

NOTATION

X,y are the linear coordinates;

h is the height of fin;

{ is the pitch of fins (distance between fins along the axis);

¢ is the thickness of fin;

Xiams Ylam are the coordinates of the boundary of the laminar underlayer;

Alam is the thickness of the laminar underlayer;

Wav is the stream velocity for average flow rate;

Qe is the heat flux removed from the surface of the fin;

dr is the density of heat flux on the surface of the fin;

o,y are the heat-transfer coefficient, local value and value averaged over the height of the fin,
regpectively;

Kiiq’ Ag are the thermal conductivity values for the liquid (gas) and the fin material,

v is the kinematic viscosity of the liquid (gas);

favs by are the temperature of liquid (gas), average calorimetric value and value along the interfin
axis at the level of the top of each fin, respectively;

te, tfg are the fin temperatures (locally along the fin and at the base);

Re is the Reynolds number;

Nu, Nugy are the Nusselt number, as determined from the local value of & and the average value a4y,
respectively;

& is the dimensionlegs quantity;

Tav is the dimengionlegs average calorimetric temperature of the liquid (gas);

Tgs Tf .av are the dimensionless temperature of the fin, local value and value averaged over the height,
respectively,
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