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The r e su l t s  of an analytic invest igat ion of heat  t r a n s f e r  through a finned sur face  a re  presented ;  
the l imi t s  of applicabi l i ty  of the assumpt ion  that the h e a t - t r a n s f e r  coefficient r ema ins  constant  
over  the ent i re  height of the fin a re  defined; and recommenda t ions  a re  given for  calculat ions 
in the region in which this assumpt ion  is not appl icable .  

In the grea t  ma jo r i ty  of s tudies [1-4] devoted to the question of heat t r a n s f e r  through finned su r f aces ,  
boundary  conditions of the third kind a re  usual ly  p r e f e r r e d  for  the analytic invest igat ion of the p roce s s ;  it 
is usual ly  a s sumed  that the h e a t - t r a n s f e r  coefficient  a is constant  over  the ent i re  height of the fin, i .e. ,  a 
= const. 

This assumpt ion  is effect ive f r o m  the viewpoint of obtaining an analytic solution of the p rob l em,  but 
it is not suff icient ly just if ied for  a number  of cases  of p rac t i ca l  impor tance  that use  finned h e a t - t r a n s f e r  
su r faces  (surfaces with c losely  spaced fins pas t  which the re  is a flow with la rge  Re values)~ Actually,  there  
a re  a number  of f ac to r s  - the mos t  important  of which is the e x t r e m e  l aminar iza t ion  of the flow at points 
of inflection - that cause  c~ to v a r y  cons iderab ly  over  the height of the fin. It is imposs ib le  to give an a 
p r i o r i  law for  the var ia t ion  of a .  

Consequently,  the p r o b l e m  of heat  t r a n s f e r  through a finned sur face  must  be formula ted  not as a p r o b -  
l em with known boundary conditions of the third kind but as a p rob l em that reduces  to the s imul taneous  so lu-  
tion of equations for  heat  conduction in the wall  and for  convect ive t r a n s f e r  of heat in the liquid (or gas) 
flowing pas t  the fin.  The  law governing the va r ia t ion  of ~ along the height of the fin is found by solving this 
p r o b l e m .  

We give below the r e su l t s  of an approximate  solution of the p rob l em of heat  t r a n s f e r  through a finned 
su r face ,  on the bas i s  of which it is poss ib le  to de te rmine  the l imi t s  of applicabil i ty of the assumpt ion  that 

= const. 

We consider  a plane one-s ided  finned wall  (Fig. 1), pas t  which flows a hydraul ica l ly  and the rmal ly  
s tabi l ized turbulent s t r e a m  of liquid (or gas) .  The the rmophys iea l  p r o p e r t i e s  of the fluid a r e  a s sumed  to 
be independent of t e m p e r a t u r e .  The notation for  the geomet r i c  p a r a m e t e r s  of the wall  (the fins a re  of co,~- 
stant  c ro s s  section) and the d i rec t ions  of the coordinate  axes a re  shown in Fig.  1. 

In o rde r  to cons t ruc t  a hydraul ic  model ,  we used  P r a n d t l ' s  hypothesis  concerning the s t ruc tu re  of the 
turbulent  flow, i .e . ,  we a s s um ed  that in the rec tangu la r  channels fo rmed  by the fins there  was a turbulent 
core  and a l ami na r  unde r l aye r  on the solid su r faces  (Fig. 1). We fu r the r  a s sumed  that there  was no overf low 
of liquid by way of the f r ee  su r face  at the top of the fins and that there  was no f r ic t ion  on the su r f ace .  

To solve the p rob l em,  we must  have dis tr ibut ion p rof i l es  for  the veloci t ies  and t e m p e r a t u r e s  in the 
liquid. 

We a s sumed  that in the turbulent  co re  the dis tr ibut ion of veloci t ies  and t e m p e r a t u r e s  is r ep re sen t ed  
by  a f r ac t iona l -power  function, with exponent 1/7 (Prandtl ,  Ecke r t ,  et al .  [3, 5]). 

The dis t r ibut ion of ve loci t ies  in the l amina r  under l aye r  is descr ibed  by a cubical  pa rabo la  [1, 3, 5]. 
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Fig .1 .  Finned sur face  and hydraulic  
model of flow. 

The thickness  of the l amina r  under layer  is: 

- A1a m = [ Re~ 
O ~ f f < O . 7  Ala m 1 k 2 1 , ~  

T l~ 

For  the l amina r  under layer  we as sumed  that the density 
of the heat flux is constant along a the rma l  s t r eaml ine  and is 
equal to the heat  flux densi ty on the sur face  of the fin. 

The length of a the rma l  s t r eaml ine  within the l imi ts  of 
the l amina r  under layer  (the th ickness  of the under layer )  can be 
es t imated  if we a s sume  that the heat  flow is d i rec ted  t r a n s v e r s e -  
ly a c r o s s  the unde r l aye r ,  i .e . ,  the t h e r m a l  s t r eaml ine s  a r e  no r -  
mal  to the boundar ies  of the flow. 

Thus ,  the th ickness  of the l amina r  under layer  was defined 
as the length of a b roken  line consis t ing of two equal line s eg -  
ments  each of which is no rmal  to one of the boundar ies  of the 
under layer  (the sur face  of the fin and the line separa t ing  the 
turbulent f r o m  the l aminar  region).  

Omitting the in te rmedia te  calculat ions,  we give below the 
re la t ions  obtained for  the boundary of the l amina r  under l aye r  
(the line separa t ing  the turbulent  f r o m  the l amina r  region),  the 
th ickness  of the l amina r  under l aye r ,  and the densi ty  of the heat  
flux on the sur face  of the f in.  

The equation of the boundary  of the l amina r  under layer  is 

Ylam 155,5 
0-< y-<0.7 Y-larn = ~ - -  

h ReO.875~ ' 

- Xla m 221,5 
0.7.<. y.< 1,0 Xla m . . . .  

21/1 Re ~ 

(i) 

as follows: 

- , , ,(  1O, l l  1 @ 144,~  1 Re~ ~- y~'~ -~, (2) 

0.7 -(..-y-~1.0 7~larn=Xla m . 

The densi ty of the heat  flux on the sur face  of the fin is: 

~,liq Fi (T i -  F~), 
qf = -1 

-W ll 
(3) 

l , =  l - -  6f . 

The d imensionless  p a r a m e t e r s  in fo rmulas  (1), (2), and (3) a r e  defined as fotlows: 

x = ( x ) / ( 1 / 2 ) l l ,  7 = y /h  a r e  d imens ionless  l inear  coordinates;  

Re = (Wav2 l l ) / v  is the Reynolds number ,  as de te rmined  f r o m  the s t r e a m  veloci ty  for  the ave rage  
flow ra te ;  

T f  = ( t f - t . ) / ( t f 0 - t . )  is a d imensionless  express ion  for  the su r face  t e m p e r a t u r e  of the fin; 

FI(Re, Y), F2(Re, Y) a r e  known functions of Re and Y. 

Setting (3) equal to the express ion  for  qf obtained f r o m  the equation for  heat  conduction in a fin as 
given in a number  of s tudies [1, 2], we have the different ia l  equation 

~ - -  cPFiT f = - -  q~FiF ~. 
dy 

(4) 
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F i g .2 .  a) Curves  fo r  de te rmin ing  the ave rage  t e m p e r a t u r e  of the 
liquid (or gas); b) cu rves  for  de te rmin ing  the total  amount of heat  
r em oved  f r o m  the fin (the f igures  next to the cu rves  r e p r e s e n t  
Reynolds numbers ) .  

It follows f r o m  Eq. (4) that the t e m p e r a t u r e  dis t r ibut ion along the height of the fin is de te rmined  only 
by the two d imens ionless  quanti t ies Re and ~, which cons iderably  s impl i f ies  the analys is  of our solution.  
The quantity ~ combines  the the rmophys ica l  c h a r a c t e r i s t i c s  of the liquid and the wall  ma t e r i a l  and the geo-  
me t r i c  p a r a m e t e r s  of the su r face :  

q5 ~,liq 2h ~ 
~,f 1 

2 116f 

The solution of Eq. (4) was obtained as the sum of a power s e r i e s .  This p rob lem was solved n u m e r i -  
cal ly  on an e lec t ronic  compute r .  

The values of Re and ~ were  va r i ed  over  the ranges  104 < Re < 108, 10 -4 < ~ < 1, which include the 
ranges  found in the opera t ion of p r e s e n t - d a y  h e a t - t r a n s f e r  dev ices .  

Using the r e su l t s  of calculat ions for  the fin t e m p e r a t u r e s ,  we invest igated the local and average  heat 
t r a n s f e r .  The local  h e a t - t r a n s f e r  coefficient  is given by the fo rmula :  

or, in dimensionless form: 

(y) qf (g) (5) 
tf (y) - -  t~v 

Nu -- a (~ 2lt 4F a (7~ - -  F~) 
, ( sa )  

Xli q Tf - -  Tav 

where  T a r  = ( t a v - t , ) / ( t f 0 - t , )  is the d imens ion less  ave rage  c a l o r i m e t r i c  t e m p e r a t u r e  of the liquid (the de-  
pendence of which on Re and ~ is shown in Fig.  2a). 

The h e a t - t r a n s f e r  coefficient  averaged  over  the height of the fin is defined as 

Qf (6) 
~av 2h (tf--/av)av ' 

where  ( t f - t av )a  v is the t e m p e r a t u r e  difference between fin and fluid, averaged  over  the height of the fin. 

Fo r  the value of Qf we obtained the expres s ion  

Qf_ /fo--tav )~f6f 
1--Tar h (--  C2)" (7) 

The coefficient  C 2 in fo rmula  (7) is the value of the der iva t ive  (dTf/dy)y_0. 
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Fig .  3. Distr ibution of local  heat  exchange along the 
height of the fin for  Re = l0 s (5 = 1 for  curves  1 and 4; 
5 = 10 -1 for  curve  2; 5 -< 10 -2 for  curve  3). 
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Fig.  4. Relat ionship between the Reynolds 
number  Re and the l imit ing values  of 5 .  

The value of the coefficient C 2 was found f r o m  ca lcu la -  
tions of the var ia t ion  in t e m p e r a t u r e  along the height of the 
fin; the var ia t ion  of C2 as a function of Re and 5 is shown in 
Fig. 2b. 

Substituting (7) into (6) and making some t r a n s f o r m a -  
t ions,  we obtain the following express ion  for  Nuav , the Nus-  
self  number  averaged  over  the height of the fin: 

Nu : 4(--C2) l (6a) 
av ~5 Tf.av__Tav 

Figure  3 shows the resu l t s  of calculat ions for  the 
var ia t ion  of local  heat exchange with height along the fin for  
Re = 105 and different va lues  of 5 .  

The heat exchange is ve ry  unevenly dis t r ibuted along 
the height of the fin: at the base  of the fin the local  value of 

Nu may be only a few percen t  of NUav; as y i nc r ea se s ,  so does Nu, and at the top of the fin the local  Nu is 
s e v e r a l  t imes  as grea t  as NUav. Fo r  a f i x e d y  value,  Nu (or a )  approaches  infinity as Re and 4, inc rease ,  
but for  l a r g e r  values  of ~ it fal ls  into the negative region.  

This  means  that the local  value of tf becomes  less  than the ave rage  c a l o r i m e t r i c  t e m p e r a t u r e  of the 
liquid, and the usual  definition of c~ given in (5) is inapplicable in this region.  This  resu l t  ag rees  with the 
conclusions a r r i ved  at by Chapman [6] and T.  L.  P e r e l ' m a n  (ITMO AN BSSR). 

The l imit ing values of 51ira. 1 for  different Reynolds numbers  Re, with a remain ing  constant  over  the 
ent i re  height of the fin, a re  shown in the f o r m  of graphs  in Fig.  4. 

A compar i son  of the calculated r e su l t s  for  the averaged  heat  exchange with the exper imenta l  data of 
other  authors [4, 7] for  heat exchange in rec tangular  channels with one-s ided  heating shows grea t  a g r e e -  
ment .  We found that for  Re >> 104, the calculat ion of the ave rage  heat  exchange based  on f r ac t iona l -power  
functions obtained by general iz ing the exper imenta l  data on heat  exchange in channels with i so the rma l  s u r -  
faces  gave us resu l t s  which were  too high (by more  than 20%). 

The l imi t s  of applicabil i ty of the assumpt ion  a = const were  de te rmined  on the bas i s  of the r e q u i r e -  
ment  that the calculated value of the t empe ra tu r e  at the base  of a fin, which is the max imum t e m p e r a t u r e  
of the finned side,  should yield values  differ ing by no more  than 10% when calculated by the two p rocedures  
being compared .  

The following express ion  is knov~n for  Qf when a = const [1]: 

qf = (tfo-- tav) )~.fSf mth (mh), 
V 2 ~  1 (8) 

m = (~f~f = 2-h- 

It should be noted that when the calculat ions a re  made by the method using the assumpt ion  c~ = eonst ,  
the fluid t e m p e r a t u r e  t a r  is given as an integral  pa r t  of the boundary conditions.  
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Since the heat flux given off by a fin into the cooling medium is independent of the method by which the 
heat t r ans fe r  is calculated,  it follows that by equating the right sides of the express ions  (7) and (8), we can 
obtain a re la t ion  for  compar ing the t empera tu res  tf0 obtained by the two methods under compar ison:  

tfo-- tar = 2 (1--Tar)  (9) 
[tf0-- lav]~ . . . . .  t (-- C~) 

For  small  values of Re and r the t empera tu res  under compar ison a re  in good agreement .  However,  
as Re and ~ increase ,  the t empera tu re  tf0 calculated on the assumption that a = const will be considerably 
lower than the t empera tu res  tf0 found by calculations taking account of the var ia t ion of c~. 

Thus,  to d i s regard  the var ia t ion  of heat exchange with height along the fin may resul t  in the designed 
heat exchanger  being unworkable,  since the calculated value of the maximum tempera tu re  will be lower than 
the true value.  

The graph in Fig. 4 shows how the l imit ing value of the complex 4~lim. 2 va r ies  with Re. For  ~ < ~ l im2 
the heat t r a n s f e r  through the finned surface  may be calculated by methods using the assumption ~ = const 
(the e r r o r  in the t empera tu re  calculat ion will not exceed 10%). 

N O T A T I O N  

x~ y 
h 
l 

6f 
Xlam, Ylam 
Alam 
Wav 

Qf 
qf 
~ , ~ a v  

7tii q, Xf 
/2 

tav , t ,  

tf, tfo 
Re 
Nu, Nuav 

T a r  
Tf, Tf. av 

are  the l inear  coordinates;  
is the height of fin; 
is the pitch of fins (distance between fins along the axis); 
is the thickness of fin; 
a re  the coordinates  of the boundary of the laminar  under layer ;  
is the thickness of the laminar  under layer ;  
is the s t r e am veloci ty  for  average flow rate;  
is the heat flux removed  f rom  the surface  of the fin; 
is the density of heat flux on the surface  of the fin; 
a re  the hea t - t r ans f e r  coefficient ,  local value and value averaged over  the height of the fin, 
respect ively;  
a re  the thermal  conductivity values for  the liquid (gas) and the fin mater ia l ;  
is the kinematic  viscosity of the liquid (gas); 
a re  the t empera tu re  of liquid (gas), average  ca lo r ime t r i c  value and value along the interf in 
axis at the level  of the top of each fin, respect ive ly ;  
a re  the fin t empera tu res  (locally along the fin and at the base); 
is the Reynolds number;  
a re  the Nusselt  number ,  as de termined f rom the local value of ~ and the average  value C~av , 
respect ive ly ;  
is the dimensionless  quantity; 
is the dimensionless  average  ca lo r ime t r i c  t empera tu re  of the liquid (gas); 
a re  the dimensionless  t empera tu re  of the fin, local value and value e:veraged over  the height,  
r espec t ive ly .  
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